3D printing now in rainbow colors

Last Updated: Thu, Aug 02, 2018 00:43 hrs

[USA] August 01 (ANI): While 3D printing can be used for wide-ranging applications, including manufacturing, medical devices and fashion, one of the major drawbacks that accompany this technology is that it can only print objects that are grey or black in color. The researchers have made some changes in the method following which it can print in the seven rainbow colors.

Selective laser sintering (SLS) printers use a laser to heat specific regions of a powdered material, usually nylon or polyamide, so that the powder melts to form a solid mass. Following which, the printer selectively sinters new powdered material layer by layer until the desired 3D structure is obtained.

To reduce the energy requirements of the process, researchers have added compounds called photosensitizers to the polymer powders. These materials, such as carbon nanotubes, carbon black and graphene, absorb light much more strongly than the polymers and transfer heat to them, enabling the use of cheaper, lower-power lasers.

However, the carbon-based photosensitizers can only produce printed objects that are grey or black. Gerasimos Konstantatos, Romain Quidant and their coworkers at The Institute of Photonic Sciences (IFCO) wanted to find a photosensitizer that would enable color printing by the SLS method.

The researchers designed gold nanorods to strongly absorb in the near-infrared region of the spectrum while being almost transparent to visible light. They coated them with silica and then mixed them with polyamide powders to print 3D objects.

They found that the gold nanorods were much better at converting light from the laser to heat than carbon black, the industry standard. Also, the new photosensitizers could produce much whiter and, when mixed with dyes, brightly colored 3D objects. Importantly, the materials are cost-effective for large-scale production. The researchers have filed several patent applications related to the new technology. (ANI)

More from Sify: